

Rama Chandra Prasad Lab for Spatial Informatics, IIIT Hyderabad

December, 11th 2015

Vector Data Models/Structures

- One model for representing geographic space
- Spatial locations are explicit
- Relationships between entities/objects are implicit
- The vector data model provides for the precise positioning of features in space.
- Based on analytical geometry, a vector model builds a complex representation from primitive objects for the dimensions: points, lines and areas
- In Summary- Vector described as a quantity with a starting coordinate and an associated displacement and direction.

Boolean Logic in GIS

- Boolean Algebra is useful for performing operations on the attributes (which may be positional or descriptive) attached to geographic entities in a GIS.
 Boolean Logic is especially useful in computing (or modelling) new
- Boolean Logic is especially useful in computing (or modelling) new attributes in topological overlay processing for both vector and raster based systems, as they can be applied to all data types, be they Boolean, Ratio, Interval, Ordinal, or Nominal.
- + AND operator () is the intersection of two sets those entities that belong to both set A and B $(~A \cap B)$
- OR operator (\cup) is the union of two sets those entities that belong to either set A or to set B ($A\cup$ B)
- + NOT operator (\neg) is the difference operator identifying those entities that belong to A but not to B (A \neg B)

Classification of Vector Overlay Operations								
Topological vector overlay op 1. Through the elements 2. By operation type (for comprising of the Uni operation of the two i	erations ca contained i example; t on, Intersed nput layers	n be classit n the layer he user wa ction, or so).	fied via two r s to be overl nts to gener me other bo	nethods: aid ate a layer olean				
For Element based method	Element types	Point	Lines	Polygons				
	Points	Points Coincide	Point in Line	Point in Polygon				
	Lines	Point in Line	Line intersecti on	Line in Polygon				
	Polygons	Point in Polygon	Line in Polygon	Polygon Overlay				
Complex databases such as G method two, where the po perform defines which ele layers.	IS classify articular ove ement types	vector ove erlay opera s may be co	erlay operation tion a user w intained in th	ons via vishes to ne two input				

Polygon overlay

- It is similar to point in polygon transformation in the sense that two sets of objects are involved, but in this case both area polygons.
- The complexity of computing a polygon overlay was one of the greatest barriers to the development of vector GIS.
- Polygon overlay has different meanings from the field and discrete object perspectives. Raster overlay is simpler, but it produces a fundamentally different kind of result. When two raster layers are overlaid, the attributes of each cell are combined according to a set of rules.
- In vector overlay there is no rule for combination, and instead the result of overlay contains all of the input information, rearranged and combined.

Logical Operators Spatial Results **Tabular Results** C2 BI B2 B2 m /a1 BI RESLECT Subset of existing features Selection by logical Subset of records expressions (same items & same (same features, but fewer of them) values, but fewer records) B2 в DISSOLVE (one item) Polygons with same Selection by item **Item Reduction** values merge (less items, fewer records, (fewer polygons) new User-IDs & adjusted areas)

Identity - Li	ine Opt	ion					
Input Coverage Identity Coverage Identity Coverage Output Coverage 23	INPUT COVERA # Attribu 1 A 2 B 3 A 4 C 5 A 6 D 7 A	UNION COVERA # Attribu 1 2 102 3 103	OUTPU COVERA # 1 2 3 4 5 6 7 7 8 9 10 11 11 12 13	$ \begin{array}{c} $	INPUT OVERA A B B A A C C C C C C C A D D D A D D	$ \begin{array}{c} $	UNION OVERA Attribu 102 102 103 103 103 102 103 102 102 103

Identity - Po	oly Opt	ion					
Input Coverage	INPUT COVERAG	IDENTITY COVERAC	OUTPUT COVERAC	c	INPUT OVERAC	II CC	DENTITY DVERAC
2 3	# Attribute	# Attribute	#	#	Attribute	#	Attribute
4 5	1	1	1	1		1	
• • •	2 A	2 102	2	2	A	1	102
Identity Coverage	3 B 4 C	5 105	3	2	R	2	102
Identity Coverage	5 D		5	3	B	1	102
1			6	2	A	3	103
$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$			7	3	В	3	103
КОЛ			8	4	С	3	103
			9	5	D	3	103
			10	4	C	1	
Output Coverage			11	4	C	2	102
			12	5	D	2	102
$ \begin{array}{c} 2 \\ 3 \\ 6 \\ 7 \\ 10 \\ 12 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13$			13	5	D	1	

Intersect -	Poly O	ption					
Input Coverage	INPUT	INTERSEC	OUTPUT		INPUT	IN	TERSECT
4 5	COVERAG # Attribute	COVERAC # Attribute	COVERAG # 1	# 1	OVERAG Attribute	# 1	OVERAG Attribute
Intersect Coverage	2 A 3 B 4 C	2 102 3 103	2 3 4	2 3 2	A B A	2 2 3	102 102 103
	5 D		5 6 7	3 4 5	B C D	3	103 103 103
Output Coverage			<u>8</u> 9	4	D	2	102

Proximity/Buffer Analysis

Generation and selection of map data within specified distance around a point, line, or polygon feature

Examples:

- Property search to find all parcels within a specified distance of a target parcel
- Environmental impact analysis requiring delineation of a buffer zone around a stream

Network Analysis

Analytical technique to evaluate flow or paths through a defined linear network.

Examples:

- Analysis of optimal routes through road network
- Analysis of flow in a water distribution system

Address Matching and Incident Mapping

Generation of maps showing the point location of features or phenomena on a suitable base map. Incident locations may be defined by x, y coordinate, street address, or other locational identifier.

Examples:

Mapping of water sampling pointsPolice incident mapping

